– Szabad tudni, mivel foglalkozik a Wignerközpontban?
– Egy új részecskegyorsítási mechanizmus nemzetközi kidolgozásában veszünk részt, a CERN (Európai Nukleáris Kutatási Szervezet – a szerk.) Nagy Hadronütköztetője ugyanis elérte fizikai korlátait.
– Jól értem: a világ legnagyobb részecskefizikai laboratóriumának 2009 végétől működő Nagy Hadronütköztetője mára elévült?!
– Némi túlzással fogalmazhatunk így is. A gyorsító kerülete 27 kilométeres; kínai metróépítők szívesen kiásnának egy új, akár 50 kilométeres gyűrűt is, de nem ez az üdvözítő út. Új gyorsítási mechanizmusra van szükség! A CERN AWAKE-kísérlete ezt a problémát igyekszik megoldani. Vákuum helyett plazmában, azaz egy kívülről nézve semleges, ám ionizált gázfelhőben, valamint rádiófrekvencia helyett lézerfénnyel vagy protonnyaláb terével tervezik a gyorsítást. Így akár ezredrészére is csökkenhet a gyorsító mérete, szinte elférne egy nagy íróasztalon. Tizenhárom intézet tagja az együttműködésnek, több mint 50 fizikus és mérnök vesz részt benne. A Wigner-központ rubídium- plazma vizsgálatával járul hozzá a kutatásokhoz, és a szükséges technológia egyes fontos speciális kérdéseit is egy helyi kutatócsoport vizsgálja.
– Mennyire számít mázlinak, hogy épp Szegeden épül Európa egyik legkorszerűbb kutatóhelye?
– Kutatásainkban az a közös, hogy az anyag legelemibb folyamatait próbáljuk feltérképezni. A szegedi lézerközpontban, az ELI-ben szuperlézerben intenzív lézertérrel gyorsítják majd a részecskéket, míg az AWAKE-kísérletben protonokat alkalmaznak erre a célra. A dél-alföldi kutatóközpont fő profilja a nagyon rövid időtartamú, vagyis az attoszekundumos jelek előállítása.
– Mégis, mennyire nagyon rövid az attoszekundumnyi jel?
– Egy attoszekundum 10 a mínusz tizennyolcadikon másodperc. Ez úgy aránylik egy másodperchez, mint egy másodperc a világegyetem egész életéhez, a mostani tudásunk szerint ugyanis az ősrobbanás óta 10 a tizennyolcadikon másodperc telt el. Így talán közérthetőbb: a fény egy másodperc alatt 7,5-szer kerüli meg a Földet az Egyenlítő körül, egy attoszekundum alatt azonban csupán néhány atomnyit mozdul el.
– Úgy tűnik, az elmélyülten ceruzavéget rágcsáló elméleti tudósok kora lejárt…
– Rájuk is szükség van, de kétségkívül a tudósoknak egyre inkább meg kell lovagolniuk a technikai-technológiai fejlődést. Talán kívülről úgy tűnhet, az anyagok vizsgálatának a hétköznapi életre nincs túl sok hatása, pedig bármely tudományág számára áttörést hozhat egy-egy eredmény. Mást ne mondjak: a World Wide Web, azaz a világháló alapjait Tim Berners-Lee a CERN munkatársaként dolgozta ki csapatával, 1991-ben került ki az első weblap. A korábban említett, csupán asztalnyi kompakt részecskegyorsítók a rákgyógyításban hozhatnak áttörést, viszonylag kis pénzből sokkal több klinika számára válhatna elérhetővé a hadronterápia: a protonnyalábbal pontosan a tumorra célozhatnak, az ép szövetek teljes megkímélése mellett. Véleményem szerint a hadronterápia úgy egy évtized múlva széles körben elérhető lesz.
– Örvendetes, ugyanakkor számomra valahogy félelmetes léptékű is a fejlődés…
– Értem, mire gondol. Sőt egyes országok kifejezetten a „vissza a kályhához” elvet használják fel, például az elektronikai hadviselés során. A csúcsmodell repülőgép-anyahajókat szinte elsüllyeszthetetlennek tartják: vízhatlan részeikkel fizikailag tökéletes szerkezetek, hiába lőnek ki rájuk sorozatban torpedókat, rakétákat. Viszont ha a hajó kifinomult elektronikai rendszerét támadják nagyon erős rádióhullámmal, az teljesen „megsüketül”, vagyis védekezés- és harcképtelenné válik.
– Ez most fikció?!
– Dehogy! Nemigen hangoztatták, de a közelmúltban több orosz incidens történt így. Merthogy az oroszok az olcsóbb elektronikai hadviselésben rendkívül jónak tűnnek, miközben az amerikaiak dollármilliókat költenek rakétavédelmi rendszerekre. Például, amikor 2014-ben a Donald Cook amerikai hadihajó behatolt a Fekete-tenger semleges vizeire, Oroszország egy Szu–24-es repülőgépet küldött a torpedóromboló körberepülésére. A fegyvertelen orosz repülőgép szakértők állítása szerint rendelkezett a legújabb orosz rádióelektronikus harci rendszerrel, amely üzemképtelenné tette a Donald Cook elektronikus műszereit. A tengerészek a hajó fedélzetéről szabad szemmel láthatták az orosz repülőgépet, a radarok képernyője viszont nem mutatott semmit. Az agyonreklámozott Aegis rendszer, amellyel ellátták az amerikai torpedórombolót, tehetetlennek bizonyult. Mindeközben a Szu–24-es elhúzott a fedélzet felett, megfordult és rakétatámadást imitált. Aztán megfordult és megismételte ezt a manővert, még 12-szer. Az incidenst követően a Donald Cook sürgősen betért egy romániai kikötőbe, és a hajó személyzetének 27 tagja benyújtotta lemondási kérelmét. Közvetve a Pentagon is megerősítette: az akció demoralizálta az amerikai hajó csapatát, a 27 személy ilyen kiszolgáltatott helyzetben nem kívánta az életét kockáztatni… Bocsásson meg, elkalandoztunk. Tudja, a részecskegyorsításon túl van néhány „becsípődésem”, amikről előadásokat tartok és publikálok: az elektromágneses lökéshullám ugyanúgy érdekel, mint az áramlástan. Nem hagy nyugodni, hogy nem értem a Niagaravízesést.
– Mit nem ért a Niagarán?!
– Annyi bizonyos, hogy lehullik a víz. De ha két vízcseppet elindítok fenn, jelen pillanatban senki nem tudja megmondani, azok pontosan hová fognak megérkezni lent.
– Az ördög ügyvédjeként kérdezem: olyan fontos lenne ezt tudni?!
– Az igazsághoz tartozik, hogy egy angol és egy francia matematikus már 1860-ban felállította a róluk elnevezett Navier–Stokes-egyenleteket a folyadékok mozgásának, áramlásának leírására. Az a csodálatos bennük, hogy ezekkel leírhatjuk az időjárást, a levegőnek a repülőgépek szárnyai körül észlelt áramlását, sőt szilárd testek folyékony anyagokon keresztül, például csillagok galaxisokon belül leírt mozgását is. A képleteket elektromos erőművek megtervezésére és az atmoszferikus szennyezés felmérésére is alkalmazhatjuk. Különös tehát, hogy a széles körű felhasználás ellenére a matematikusok eddig még nem találtak bizonyítékot a háromdimenziós egyenletek érvényességére. Nincs olyanféle bizonyítása, mint annak, hogy 2 × 2 = 4.
– És mi történik azután, ha kiderül, a Navier–Stokes-egyenletnek létezik megoldása?
– A megfejtő a szakmai dicsőségen túl komoly pénzjutalmat kap. Az amerikai Clay Matematikai Intézet ugyanis 2000-ben az évezred hét legfontosabb matematikai problémája közé választotta be, amelyek megoldására egyenként egymillió dolláros díjat alapított. Eddig egyet fejtettek meg 2002-ben.
– Szóval mi lesz más utána?
– Igazából semmi. Minél egyszerűbb vagy absztraktabb (elvont, elméleti – a szerk.) dologról van szó, annál bosszantóbb, hogy nincs megválaszolva a kérdés.
– Ha visszamegyünk a mi kályhánkhoz: a világban létezik néhány olyan fizikai állandó, amelynek a létét, eredőjét a tudósok a mai napig nem tudják megmagyarázni; ilyen például a gravitációs erő. Ez is bosszantja?
– Ez nem. Én hiszem, hogy kell lennie egy felsőbb teremtő erőnek, egy intelligensebb rendező elvnek, egy magasabb rendű, nem anyagi identitásnak, amely megteremtette a világot, vagy legalábbis hozzájárult a teremtéshez. A tudományfilozófiában ezen a szinten tartok, látja, még keresem hozzá a pontos megfogalmazást.
– Min mosolyog?
– Most veszem észre: ez a beszélgetés végül is oda „fut ki”, hogy fizikusként, a gravitációs erővel összevetve, sokkal közelebb állok a Navier–Stokes-egyenletek megfejtéséhez…